Delta Opioid activation of the Mitogen-activated protein kinase cascade does not require transphosphorylation of Receptor Tyrosine Kinases

نویسندگان

  • H Kenneth Kramer
  • Irma Onoprishvili
  • Matthew L Andria
  • Kayane Hanna
  • Karina Sheinkman
  • Lisa B Haddad
  • Eric J Simon
چکیده

BACKGROUND In this study, we investigated the mechanism(s) by which delta opioids induce their potent activation of extracellular signal-regulated protein kinases (ERKs) in different cell lines expressing the cloned delta-opioid receptor (delta-OR). While it has been known for some time that OR stimulation leads to the phosphorylation of both ERK isoforms, the exact progression of events has remained elusive. RESULTS Our results indicate that the transphosphorylation of an endogenous epidermal growth factor receptor (EGFR) in the human embryonic kidney (HEK-293) cell line does not occur when co-expressed delta-ORs are stimulated by the delta-opioid agonist, D-Ser-Leu-enkephalin-Thr (DSLET). Moreover, neither pre-incubation of cultures with the selective EGFR antagonist, AG1478, nor down-regulation of the EGFR to a point where EGF could no longer activate ERKs had an inhibitory effect on ERK activation by DSLET. These results appear to rule out any structural or catalytic role for the EGFR in the delta-opioid-mediated MAPK cascade. To confirm these results, we used C6 glioma cells, a cell line devoid of the EGFR. In delta-OR-expressing C6 glioma cells, opioids produce a robust phosphorylation of ERK 1 and 2, whereas EGF has no stimulatory effect. Furthermore, antagonists to the RTKs that are endogenously expressed in C6 glioma cells (insulin receptor (IR) and platelet-derived growth factor receptor (PDGFR)) were unable to reduce opioid-mediated ERK activation. CONCLUSION Taken together, these data suggest that the transactivation of resident RTKs does not appear to be required for OR-mediated ERK phosphorylation and that the tyrosine-phosphorylated delta-OR, itself, is likely to act as its own signalling scaffold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P20: The Role of Protein Kinases in Memory

When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...

متن کامل

Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF.

The ErbB family of receptors, which includes the epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4, mediate signaling by EGF-like polypeptides. To better understand the role of the EGFR tyrosine kinase, we analyzed signaling by a kinase-inactive EGFR (K721M) in ErbB-devoid 32D cells. K721M alone exhibited no detectable signaling capacity, whereas coexpression of K721M with ErbB2,...

متن کامل

Requirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes

The role of Raf and MAPK (mitogen-activated protein kinase) during the maturation of Xenopus oocytes was investigated. Treatment of oocytes with progesterone resulted in a shift in the electrophoretic mobility of Raf at the onset of germinal vesicle breakdown (GVBD), which was coincident with the activation of MAPK. Expression of a kinase-defective mutant of the human Raf-1 protein (KD-RAF) inh...

متن کامل

Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase.

Receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) can both activate mitogen-activated protein kinase (MAPK), a critical intermediate in the transduction of proliferative signals. Numerous observations have demonstrated that integrin-mediated cell anchorage can regulate the efficiency of signaling from RTKs to MAPK. Recently, a relationship between integrins and GPCR signa...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BMC Pharmacology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2002